Day 25 Path Planning in Discrete Sampled Space # Connectivity in Discrete Sampled Space - a path on a discrete grid is a sequence of moves between connected cells - for a square tiling there are two possible definitions of connectivity 4-connectivity 8-connectivity # 4-Connectivity • on a 4-connected tiling the distance between two cells is called the taxicab distance, rectilinear distance, L_1 distance, L_1 norm, city block distance, or Manhattan distance | | - | 2 | | | | | |---|---|---|---|---|---|--| | _ | | 3 | 4 | | | | | 2 | | | 5 | 6 | | | | 3 | | | | 7 | 8 | | | 4 | 5 | 6 | 7 | 8 | 9 | | | | | | | | | | | | | | | | | | - the wave-front planner finds a path between a start and goal point in spaces represented as a grid where - free space is labeled with a 0 - obstacles are labeled with a I - the goal is labeled with a 2 - the start is known start starting at the goal cell ``` L := 2 while start cell is unlabelled for each cell C with label L for each cell Z connected to C with label 0 label Z with L+I L := L + I ``` | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | start | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 3 | 2 | |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 3 | | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | start | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 3 | 2 | |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 3 | | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | start | 0 | 0 | 0 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | |---|---|---|----|----|----|----|----|----|---|---|---|---|---|---|---| | 0 | 0 | 0 | 0 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | | 0 | 0 | 1 | 1 | 0 | 14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | start | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | |----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---| | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | | 19 | 18 | 1 | 1 | 15 | 14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 20 | 19 | 1 | 1 | 16 | 15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | 20 | 1 | 1 | 17 | 16 | 17 | 18 | 19 | 20 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 1 | 1 | 1 | 18 | 17 | 18 | 19 | 20 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 1 | 1 | 1 | 19 | 18 | 19 | 20 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 20 | 19 | 20 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | start | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | |----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | | 19 | 18 | 1 | 1 | 15 | 14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 20 | 19 | 1 | 1 | 16 | 15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 21 | 20 | 1 | 1 | 17 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 1 | 1 | 37 | 38 | | 1 | 1 | 1 | 1 | 18 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 1 | 1 | 36 | 37 | | 1 | 1 | 1 | 1 | 19 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 1 | 1 | 35 | 36 | | 0 | 0 | 1 | 1 | 20 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 1 | 1 | 34 | 35 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 23 | 24 | 1 | 1 | 1 | 1 | 33 | 34 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 24 | 25 | 1 | 1 | 1 | 1 | 32 | 33 | | 0 | 0 | 1 | 1 | 29 | 28 | 27 | 26 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | | 0 | 0 | 1 | 1 | 30 | 29 | 28 | 27 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 33 | 34 | | 0 | 50 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 34 | 35 | | 50 | 49 | 48 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 36 | | * | 50 | 49 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 37 | start to generate a path starting from the start point ``` L := start point label while not at the goal move to any connected cell with label L-I L := L-I ``` | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | |----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | | 19 | 18 | 1 | 1 | 15 | 14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 20 | 19 | 1 | 1 | 16 | 15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 21 | 20 | 1 | 1 | 17 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 1 | 1 | 37 | 38 | | 1 | 1 | 1 | 1 | 18 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 1 | 1 | 36 | 37 | | 1 | 1 | 1 | 1 | 19 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 1 | 1 | 35 | 36 | | 0 | 0 | 1 | 1 | 20 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 1 | 1 | 34 | 35 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 23 | 24 | 1 | 1 | 1 | 1 | 33 | 34 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 24 | 25 | 1 | 1 | 1 | 1 | 32 | 33 | | 0 | 0 | 1 | 1 | 29 | 28 | 27 | 26 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | | 0 | 0 | 1 | 1 | 30 | 29 | 28 | 27 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | | 0 | 51 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 33 | 34 | | 51 | 50 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 34 | 35 | | 50 | 49 | 48 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 36 | | 51 | 50 | 49 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 37 | 3/13/2011 start # advantage: - will find a shortest path (in terms of connectivity) between start and goal if a path exists - generalizes to higher dimensions ## disadvantages: - path often runs adjacent to obstacles - planner searches the entire space with radius R around the goal (where R is the distance between the start and goal) - paths restricted by grid connectivity are longer than necessary - paths restricted by grid connectivity are longer than necessary - Manhattan distance = 9 - \blacktriangleright straight line distance = sqrt(16 + 25) = 6.403... # Planners Using Graph Algorithms - A* is a common algorithm in game AI programming and robotics - first described in 1968 - http://theory.stanford.edu/~amitp/GameProgramming/ - ▶ A* is the foundation for Theta* - Daniel, Nash, Koenig. Theta*: Any-Angle Planning on Grids, Journal of Artificial Intelligence Research, 39, 2010. - path planning on a grid where paths are allowed to pass through cells at any angle (not just using 4- or 8-connectivity) #### **Potential Functions** - in continuous space potential functions can be used for path planning - lacktriangle a potential function is a differentiable real-valued function U $$U:\mathbb{R}^m\to\mathbb{R}$$ - lacktriangleright i.e., U assigns a scalar real value to every point in space - potential functions you might know - gravitational potential - electrostatic potential - the goal potential should be an attractive potential - small near the goal - large far from the goal - monotonically increasing - nice too if it is continuously differentiable consider the quadratic potential $$U_{ m attract} = lpha \left\| q - q_{ m goal} \right\|^2$$ "rolling towards the goal" can be accomplished using gradient descent $$F = \nabla U_{\text{attract}}$$ $$= \begin{bmatrix} \frac{\partial U}{\partial x} \\ \frac{\partial U}{\partial y} \end{bmatrix}$$ $$= \alpha (q - q_{\text{goal}})$$ - gradient descent - > starting at initial configuration, take a small step in the direction opposite to the gradient F until |F/>=0 - notice that the wave-front planner basically works this way - it defines a potential where there is only one minimum - the minimum is located at the goal - it then uses gradient descent to move towards the goal | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | |----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | | 19 | 18 | 1 | 1 | 15 | 14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 20 | 19 | 1 | 1 | 16 | 15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 21 | 20 | 1 | 1 | 17 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 1 | 1 | 37 | 38 | | 1 | 1 | 1 | 1 | 18 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 1 | 1 | 36 | 37 | | 1 | 1 | 1 | 1 | 19 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 1 | 1 | 35 | 36 | | 0 | 0 | 1 | 1 | 20 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 1 | 1 | 34 | 35 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 23 | 24 | 1 | 1 | 1 | 1 | 33 | 34 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 24 | 25 | 1 | 1 | 1 | 1 | 32 | 33 | | 0 | 0 | 1 | 1 | 29 | 28 | 27 | 26 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | | 0 | 0 | 1 | 1 | 30 | 29 | 28 | 27 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | | 0 | 51 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 33 | 34 | | 51 | 50 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 34 | 35 | | 50 | 49 | 48 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 36 | | 51 | 50 | 49 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 37 | start