Day 25

Path Planning in Discrete Sampled Space

Connectivity in Discrete Sampled Space

- a path on a discrete grid is a sequence of moves between connected cells
- for a square tiling there are two possible definitions of connectivity

4-connectivity

8-connectivity

4-Connectivity

• on a 4-connected tiling the distance between two cells is called the taxicab distance, rectilinear distance, L_1 distance, L_1 norm, city block distance, or Manhattan distance

	-	2				
_		3	4			
2			5	6		
3				7	8	
4	5	6	7	8	9	

- the wave-front planner finds a path between a start and goal point in spaces represented as a grid where
 - free space is labeled with a 0
 - obstacles are labeled with a I
 - the goal is labeled with a 2
 - the start is known

start

starting at the goal cell

```
L := 2
while start cell is unlabelled
for each cell C with label L
for each cell Z connected to C with label 0
label Z with L+I
L := L + I
```

0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0
1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0
1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0
0	0	1	1	1	1	1	1	0	0	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0	1	1	1	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

start

0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3
0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0
1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0
1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0
0	0	1	1	1	1	1	1	0	0	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0	1	1	1	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

start

0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	2
0	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3
0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0
1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0
1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0
0	0	1	1	1	1	1	1	0	0	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0	1	1	1	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

start

0	0	0	14	13	12	11	10	9	8	7	6	5	4	3	2
0	0	0	0	14	13	12	11	10	9	8	7	6	5	4	3
0	0	1	1	0	14	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0
1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0
1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0
0	0	1	1	1	1	1	1	0	0	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0	1	1	1	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

start

17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3
19	18	1	1	15	14	1	1	1	1	1	1	1	1	1	1
20	19	1	1	16	15	1	1	1	1	1	1	1	1	1	1
0	20	1	1	17	16	17	18	19	20	0	0	1	1	0	0
1	1	1	1	18	17	18	19	20	0	0	0	1	1	0	0
1	1	1	1	19	18	19	20	0	0	0	0	1	1	0	0
0	0	1	1	20	19	20	0	0	0	0	0	1	1	0	0
0	0	1	1	1	1	1	1	0	0	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0	1	1	1	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

start

17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3
19	18	1	1	15	14	1	1	1	1	1	1	1	1	1	1
20	19	1	1	16	15	1	1	1	1	1	1	1	1	1	1
21	20	1	1	17	16	17	18	19	20	21	22	1	1	37	38
1	1	1	1	18	17	18	19	20	21	22	23	1	1	36	37
1	1	1	1	19	18	19	20	21	22	23	24	1	1	35	36
0	0	1	1	20	19	20	21	22	23	24	25	1	1	34	35
0	0	1	1	1	1	1	1	23	24	1	1	1	1	33	34
0	0	1	1	1	1	1	1	24	25	1	1	1	1	32	33
0	0	1	1	29	28	27	26	25	26	27	28	29	30	31	32
0	0	1	1	30	29	28	27	26	27	28	29	30	31	32	33
0	0	1	1	1	1	1	1	1	1	1	1	1	1	33	34
0	50	1	1	1	1	1	1	1	1	1	1	1	1	34	35
50	49	48	46	45	44	43	42	41	40	39	38	37	36	35	36
*	50	49	47	46	45	44	43	42	41	40	39	38	37	36	37

start

to generate a path starting from the start point

```
L := start point label
while not at the goal
move to any connected cell with label L-I
L := L-I
```

17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3
19	18	1	1	15	14	1	1	1	1	1	1	1	1	1	1
20	19	1	1	16	15	1	1	1	1	1	1	1	1	1	1
21	20	1	1	17	16	17	18	19	20	21	22	1	1	37	38
1	1	1	1	18	17	18	19	20	21	22	23	1	1	36	37
1	1	1	1	19	18	19	20	21	22	23	24	1	1	35	36
0	0	1	1	20	19	20	21	22	23	24	25	1	1	34	35
0	0	1	1	1	1	1	1	23	24	1	1	1	1	33	34
0	0	1	1	1	1	1	1	24	25	1	1	1	1	32	33
0	0	1	1	29	28	27	26	25	26	27	28	29	30	31	32
0	0	1	1	30	29	28	27	26	27	28	29	30	31	32	33
0	51	1	1	1	1	1	1	1	1	1	1	1	1	33	34
51	50	1	1	1	1	1	1	1	1	1	1	1	1	34	35
50	49	48	46	45	44	43	42	41	40	39	38	37	36	35	36
51	50	49	47	46	45	44	43	42	41	40	39	38	37	36	37

3/13/2011

start

advantage:

- will find a shortest path (in terms of connectivity) between start and goal if a path exists
- generalizes to higher dimensions

disadvantages:

- path often runs adjacent to obstacles
- planner searches the entire space with radius R around the goal (where R is the distance between the start and goal)
- paths restricted by grid connectivity are longer than necessary

- paths restricted by grid connectivity are longer than necessary
 - Manhattan distance = 9
 - \blacktriangleright straight line distance = sqrt(16 + 25) = 6.403...

Planners Using Graph Algorithms

- A* is a common algorithm in game AI programming and robotics
 - first described in 1968
 - http://theory.stanford.edu/~amitp/GameProgramming/
- ▶ A* is the foundation for Theta*
 - Daniel, Nash, Koenig. Theta*: Any-Angle Planning on Grids, Journal of Artificial Intelligence Research, 39, 2010.
 - path planning on a grid where paths are allowed to pass through cells at any angle (not just using 4- or 8-connectivity)

Potential Functions

- in continuous space potential functions can be used for path planning
- lacktriangle a potential function is a differentiable real-valued function U

$$U:\mathbb{R}^m\to\mathbb{R}$$

- lacktriangleright i.e., U assigns a scalar real value to every point in space
- potential functions you might know
 - gravitational potential
 - electrostatic potential

- the goal potential should be an attractive potential
 - small near the goal
 - large far from the goal
 - monotonically increasing
 - nice too if it is continuously differentiable

consider the quadratic potential

$$U_{
m attract} = lpha \left\| q - q_{
m goal} \right\|^2$$

"rolling towards the goal" can be accomplished using gradient descent

$$F = \nabla U_{\text{attract}}$$

$$= \begin{bmatrix} \frac{\partial U}{\partial x} \\ \frac{\partial U}{\partial y} \end{bmatrix}$$

$$= \alpha (q - q_{\text{goal}})$$

- gradient descent
 - > starting at initial configuration, take a small step in the direction opposite to the gradient F until |F/>=0

- notice that the wave-front planner basically works this way
 - it defines a potential where there is only one minimum
 - the minimum is located at the goal
 - it then uses gradient descent to move towards the goal

17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3
19	18	1	1	15	14	1	1	1	1	1	1	1	1	1	1
20	19	1	1	16	15	1	1	1	1	1	1	1	1	1	1
21	20	1	1	17	16	17	18	19	20	21	22	1	1	37	38
1	1	1	1	18	17	18	19	20	21	22	23	1	1	36	37
1	1	1	1	19	18	19	20	21	22	23	24	1	1	35	36
0	0	1	1	20	19	20	21	22	23	24	25	1	1	34	35
0	0	1	1	1	1	1	1	23	24	1	1	1	1	33	34
0	0	1	1	1	1	1	1	24	25	1	1	1	1	32	33
0	0	1	1	29	28	27	26	25	26	27	28	29	30	31	32
0	0	1	1	30	29	28	27	26	27	28	29	30	31	32	33
0	51	1	1	1	1	1	1	1	1	1	1	1	1	33	34
51	50	1	1	1	1	1	1	1	1	1	1	1	1	34	35
50	49	48	46	45	44	43	42	41	40	39	38	37	36	35	36
51	50	49	47	46	45	44	43	42	41	40	39	38	37	36	37

start